752 research outputs found

    A Composite Material-based Computational Model for Diaphragm Muscle Biomechanical Simulation

    Get PDF
    Lung cancer is the most common cause of cancer related death among both men and women. Radiation therapy is the most widely used treatment for this disease. Motion compensation for tumor movement is often clinically important and biomechanics-based motion models may provide the most robust method as they are based on the physics of motion. In this study, we aim to develop a patient specific biomechanical model that predicts the deformation field of the diaphragm muscle during respiration. The first part of the project involved developing an accurate and adaptable micro-to-macro mechanical approach for skeletal muscle tissue modelling for application in a FE solver. The next objective was to develop the FE-based mechanical model of the diaphragm muscle based on patient specific 4D-CT data. The model shows adaptability to pathologies and may have the potential to be incorporated into respiratory models for the aid in treatment and diagnosis of diseases

    Image Region-Snapping Based on Touch-and-Hold and Drag Gestures

    Get PDF
    Current techniques for image-based search perform a search the entire image and do not offer an easy to use mechanism for seamless selection of portions of an image. This disclosure describes techniques to automatically suggest refined (subset) regions within a given image that can be used to trigger a search. In response to a gesture, e.g., touch-and-hold, a sub-region within the image that includes an object is identified and is shown within a bounding box. In response to a discontinuation of the gesture, e.g., lifting of the user’s finger, a semantic search is performed for content that is similar to the contents of the bounding box. Other types of operations can also be performed specific to the bounding box

    Invoking Visual Search With Device Camera Using Intuitive Physical Gestures

    Get PDF
    Invoking a visual search typically requires a user to open an application that supports the functionality before pointing the camera at the space or objects for which visual search is desired. Such an approach for invoking a visual search is time-consuming and cumbersome and limits the types of actions that can be supported by these capabilities. This disclosure describes techniques that enable users to invoke visual searches from their device cameras via intuitive physical gestures. Users can then take further actions on objects within view

    Multilayer scaffolds in orthopaedic tissue engineering

    Get PDF
    Abstract Purpose The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Methods Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. Results In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Conclusions Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future

    Hereditary transthyretin amyloidosis: baseline characteristics of patients in the NEURO-TTR trial

    Get PDF
    Background: Hereditary transthyretin (ATTRm) amyloidosis is a rare, progressive and fatal disease with a range of clinical manifestations.Objective: This study comprehensively evaluates disease characteristics in a large, diverse cohort of patients with ATTRm amyloidosis.Methods: Adult patients (N = 172) with Stage 1 or Stage 2 ATTRm amyloidosis who had polyneuropathy were screened and enrolled across 24 investigative sites and 10 countries in the NEURO-TTR trial (www.clinicaltrials.gov, NCT01737398). Medical and disease history, quality of life, laboratory data, and clinical assessments were analyzed.Results: The NEURO-TTR patient population was diverse in age, disease severity, TTR mutation, and organ involvement. Twenty-seven different TTR mutations were present, with Val30Met being the most common (52%). One third of patients reported early onset disease (before age 50) and the average duration of neuropathy symptoms was 5.3 years. Symptoms affected multiple organs and systems, with nearly 70% of patients exhibiting broad involvement of weakness, sensory loss, and autonomic disturbance. Over 60% of patients had cardiomyopathy, with highest prevalence in the United States (72%) and lowest in South America/Australasia (33%). Cardiac biomarker NT-proBNP correlated with left ventricular wall thickness (p<.001). Quality of life, measured by Norfolk QoL-DN and SF-36 patient-reported questionnaires, was significantly impaired and correlated with disease severity.Conclusions: Baseline data from the NEURO-TTR trial demonstrates ATTRm amyloidosis as a systemic disease with deficits in multiple organs and body systems, leading to decreased quality of life. We report concomitant presentation of polyneuropathy and cardiomyopathy in most patients, and early involvement of multiple body systems

    Feasibility study of a clinically-integrated randomized trial of modifications to radical prostatectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous technical modifications to radical prostatectomy have been proposed. Such modifications are likely to lead to only slight improvements in outcomes. Although small differences would be worthwhile, an appropriately powered randomized trial would need to be very large, and thus of doubtful feasibility given the expense, complexity and regulatory burden of contemporary clinical trials. We have proposed a novel methodology, the clinically-integrated randomized trial, which dramatically streamlines trial procedures in order to reduce the marginal cost of an additional patient towards zero. We aimed to determine the feasibility of implementing such a trial for radical prostatectomy.</p> <p>Methods</p> <p>Patients undergoing radical prostatectomy as initial treatment for prostate cancer were randomized in a factorial design to involvement of the fascia during placement of the anastomotic sutures, urethral irrigation, both or neither. Endpoint data were obtained from routine clinical documentation. Accrual and compliance rates were monitored to determine the feasibility of the trial.</p> <p>Results</p> <p>From a total of 260 eligible patients, 154 (59%) consented; 56 patients declined to participate, 20 were not approached on recommendation of the treating surgeon, and 30 were not approached for logistical reasons. Although recording by surgeons of the procedure used was incomplete (~80%), compliance with randomization was excellent when it was recorded, with only 6% of procedures inconsistent with allocation. Outcomes data was received from 71% of patients at one year. This improved to 83% as the trial progressed.</p> <p>Conclusions</p> <p>A clinically-integrated randomized trial was conducted at low cost, with excellent accrual, and acceptable compliance with treatment allocation and outcomes reporting. This demonstrates the feasibility of the methodology. Improved methods to ensure documentation of surgical procedures would be required before wider implementation.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00928850">NCT00928850</a></p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Inotersen treatment for patients with hereditary transthyretin amyloidosis

    Get PDF
    BACKGROUND: Hereditary transthyretin amyloidosis is caused by pathogenic single-nucleotide variants in the gene encoding transthyretin ( TTR) that induce transthyretin misfolding and systemic deposition of amyloid. Progressive amyloid accumulation leads to multiorgan dysfunction and death. Inotersen, a 2'- O-methoxyethyl-modified antisense oligonucleotide, inhibits hepatic production of transthyretin. METHODS: We conducted an international, randomized, double-blind, placebo-controlled, 15-month, phase 3 trial of inotersen in adults with stage 1 (patient is ambulatory) or stage 2 (patient is ambulatory with assistance) hereditary transthyretin amyloidosis with polyneuropathy. Patients were randomly assigned, in a 2:1 ratio, to receive weekly subcutaneous injections of inotersen (300 mg) or placebo. The primary end points were the change in the modified Neuropathy Impairment Score+7 (mNIS+7; range, -22.3 to 346.3, with higher scores indicating poorer function; minimal clinically meaningful change, 2 points) and the change in the score on the patient-reported Norfolk Quality of Life-Diabetic Neuropathy (QOL-DN) questionnaire (range, -4 to 136, with higher scores indicating poorer quality of life). A decrease in scores indicated improvement. RESULTS: A total of 172 patients (112 in the inotersen group and 60 in the placebo group) received at least one dose of a trial regimen, and 139 (81%) completed the intervention period. Both primary efficacy assessments favored inotersen: the difference in the least-squares mean change from baseline to week 66 between the two groups (inotersen minus placebo) was -19.7 points (95% confidence interval [CI], -26.4 to -13.0; P<0.001) for the mNIS+7 and -11.7 points (95% CI, -18.3 to -5.1; P<0.001) for the Norfolk QOL-DN score. These improvements were independent of disease stage, mutation type, or the presence of cardiomyopathy. There were five deaths in the inotersen group and none in the placebo group. The most frequent serious adverse events in the inotersen group were glomerulonephritis (in 3 patients [3%]) and thrombocytopenia (in 3 patients [3%]), with one death associated with one of the cases of grade 4 thrombocytopenia. Thereafter, all patients received enhanced monitoring. CONCLUSIONS: Inotersen improved the course of neurologic disease and quality of life in patients with hereditary transthyretin amyloidosis. Thrombocytopenia and glomerulonephritis were managed with enhanced monitoring. (Funded by Ionis Pharmaceuticals; NEURO-TTR ClinicalTrials.gov number, NCT01737398 .)

    Testing General Relativity with Present and Future Astrophysical Observations

    Get PDF
    One century after its formulation, Einstein's general relativity has maderemarkable predictions and turned out to be compatible with all experimentaltests. Most of these tests probe the theory in the weak-field regime, and thereare theoretical and experimental reasons to believe that general relativityshould be modified when gravitational fields are strong and spacetime curvatureis large. The best astrophysical laboratories to probe strong-field gravity areblack holes and neutron stars, whether isolated or in binary systems. We reviewthe motivations to consider extensions of general relativity. We present a(necessarily incomplete) catalog of modified theories of gravity for whichstrong-field predictions have been computed and contrasted to Einstein'stheory, and we summarize our current understanding of the structure anddynamics of compact objects in these theories. We discuss current bounds onmodified gravity from binary pulsar and cosmological observations, and wehighlight the potential of future gravitational wave measurements to inform uson the behavior of gravity in the strong-field regime
    corecore